
 

International Journal of Computer Technology and Science 
    Volume. 1, No. 1, January 2024 

e-ISSN : 3048-1961; and p-ISSN : 3048-1899; Page. 07-13 
DOI:   https://doi.org/10.62951/ijcts.v1i1.56  

Available online at: https://international.arteii.or.id/index.php/IJCTS    
 

 

Enhancing Edge Computing Performance for IoT Applications Using 

Federated Learning Techniques 
 

Lucas Henry Young1, Grace Olivia Hall2 

1,2 Nanyang Technological University (NTU), Singapore 

 
Abstract: As Internet of Things (IoT) devices proliferate, edge computing has become essential for reducing 

latency and improving data privacy. This paper explores federated learning as a method to enhance the efficiency 

and security of edge computing systems. We implement and evaluate federated models in various IoT 

environments, demonstrating how federated learning can reduce data transfer and computation load while 

maintaining accuracy in data analysis. 
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1. INTRODUCTION TO EDGE COMPUTING AND ITS IMPORTANCE IN IOT 

Edge computing represents a paradigm shift in how data is processed and analyzed in 

the context of IoT applications. As the number of IoT devices continues to grow—projected to 

reach 75.44 billion by 2025 (Statista, 2021)—the demand for efficient data processing solutions 

becomes increasingly critical. Traditional cloud computing architectures face challenges such 

as high latency, bandwidth limitations, and privacy concerns, particularly when handling 

sensitive data generated by IoT devices. By processing data closer to the source, edge 

computing minimizes latency and enhances real-time decision-making capabilities, which is 

essential for applications ranging from autonomous vehicles to smart healthcare systems (Shi 

et al., 2016). 

Moreover, edge computing significantly improves data privacy by enabling localized 

data processing. According to a report by the International Data Corporation (IDC), 40% of 

data generated by IoT devices will be processed at the edge by 2025 (IDC, 2020). This 

localization reduces the need to transmit sensitive information to centralized cloud servers, thus 

mitigating risks associated with data breaches and unauthorized access. For instance, in smart 

city applications, edge computing allows for the analysis of surveillance footage without 

sending raw video data to the cloud, preserving citizen privacy while still enabling actionable 

insights (Zhang et al., 2019). 

The integration of edge computing with IoT also facilitates the efficient use of network 

resources. By reducing the amount of data sent to the cloud, edge computing alleviates network 

congestion and lowers operational costs. A study by the Edge Computing Consortium found 

that implementing edge computing solutions can lead to a 30% reduction in bandwidth usage 

(Edge Computing Consortium, 2019). This efficiency is particularly crucial in scenarios where 

real-time responsiveness is paramount, such as in industrial automation or remote monitoring 

of critical infrastructure. 
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However, the implementation of edge computing is not without its challenges. Issues 

such as device heterogeneity, limited computational resources, and security vulnerabilities 

must be addressed to fully realize the benefits of this approach. Therefore, innovative solutions 

are required to enhance the performance and security of edge computing systems, making 

federated learning a promising candidate for addressing these challenges. 

In summary, edge computing is a vital component of the IoT ecosystem, providing 

solutions to latency and privacy concerns while optimizing network resource utilization. As we 

delve deeper into the potential of federated learning, it becomes evident that this technique can 

further enhance the capabilities of edge computing, paving the way for more efficient and 

secure IoT applications. 

 

2. FEDERATED LEARNING: A NOVEL APPROACH TO DATA PROCESSING 

Federated learning is an emerging machine learning paradigm that enables 

collaborative model training across distributed devices while keeping the data localized. This 

technique is particularly relevant for IoT applications, where data privacy and bandwidth 

efficiency are paramount. Unlike traditional centralized training, where data is sent to a central 

server, federated learning allows models to be trained on local datasets, with only the model 

updates being shared (McMahan et al., 2017). This approach significantly reduces the amount 

of sensitive data transmitted over the network, thereby enhancing privacy and security. 

Statistically, federated learning has shown promising results in various applications. 

For instance, a study by Google demonstrated that federated learning could improve the 

accuracy of keyboard prediction models while ensuring that user data remained on their 

devices. The model achieved an accuracy improvement of 10% over traditional methods, 

showcasing the potential of federated learning to enhance performance without compromising 

user privacy (Hard et al., 2018). Such results are crucial for IoT applications where data 

sensitivity is a significant concern, including healthcare and financial services. 

In addition to privacy benefits, federated learning can reduce the computational load on 

edge devices. By allowing local computations and only sending model updates, federated 

learning minimizes the need for extensive data transfers, which is especially beneficial in 

environments with limited bandwidth. For example, in smart grid applications, federated 

learning can enable local energy consumption forecasting without overwhelming the network 

with data, thus ensuring efficient energy management (Yang et al., 2019). 

Moreover, federated learning is inherently resilient to data heterogeneity, a common 

challenge in IoT environments where devices may generate data of varying quality and 



 

 

quantity. This adaptability allows for more robust model training, as federated learning can 

leverage diverse datasets from different devices to enhance the generalization capabilities of 

the models (Kairouz et al., 2019). Consequently, federated learning not only addresses privacy 

concerns but also improves the overall performance of machine learning models in edge 

computing scenarios. 

In conclusion, federated learning presents a transformative approach to data processing 

in IoT applications. By prioritizing data privacy and reducing computational burdens, this 

technique aligns well with the goals of edge computing, making it a vital area of exploration 

for enhancing the performance and security of IoT systems. 

 

3. IMPLEMENTATION OF FEDERATED LEARNING IN IOT ENVIRONMENTS 

The implementation of federated learning in IoT environments necessitates a careful 

consideration of various factors, including device capabilities, network conditions, and 

application requirements. One of the primary challenges is the variability in computational 

resources across different IoT devices. For instance, while some devices may possess 

significant processing power, others, such as low-power sensors, may have limited capabilities 

(Li et al., 2020). This heterogeneity necessitates the development of adaptive federated learning 

algorithms that can efficiently allocate resources based on the device's capabilities. 

A practical example of federated learning implementation can be observed in the 

healthcare sector, where wearable devices collect sensitive patient data. By utilizing federated 

learning, healthcare providers can develop predictive models for patient outcomes without 

compromising data privacy. A study conducted by Sheller et al. (2020) demonstrated that 

federated learning could be successfully applied to MRI data analysis, achieving comparable 

performance to centralized models while ensuring that patient data remained on the devices. 

This case exemplifies how federated learning can be effectively integrated into IoT applications 

in sensitive domains. 

Furthermore, the communication efficiency of federated learning is a critical aspect of 

its implementation in IoT environments. The frequency and size of model updates exchanged 

between devices and the central server can significantly impact the overall performance of the 

system. Techniques such as model compression and quantization can be employed to reduce 

the size of updates, thereby minimizing bandwidth usage (Wang et al., 2020). For example, by 

applying quantization techniques, researchers were able to reduce the communication overhead 

by up to 90% without sacrificing model accuracy. 
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Moreover, the robustness of federated learning against adversarial attacks is another 

essential consideration. In IoT environments, where devices may be exposed to various security 

threats, ensuring the integrity of the learning process is paramount. Recent advancements in 

secure federated learning techniques, such as differential privacy and secure multiparty 

computation, have shown promise in safeguarding the data and model updates exchanged 

during the training process (Bonawitz et al., 2017). Implementing these techniques can further 

bolster the security of federated learning systems in IoT applications. 

In summary, the successful implementation of federated learning in IoT environments 

requires addressing challenges related to device heterogeneity, communication efficiency, and 

security. By developing adaptive algorithms and incorporating advanced security measures, 

federated learning can be effectively utilized to enhance the performance and privacy of edge 

computing systems in various IoT applications. 

 

4. EVALUATION OF FEDERATED LEARNING MODELS IN IOT APPLICATIONS 

Evaluating the performance of federated learning models in IoT applications involves 

multiple metrics, including accuracy, communication efficiency, and computational overhead. 

One of the primary advantages of federated learning is its ability to maintain high accuracy 

levels while minimizing data transfers. A study by Li et al. (2020) illustrated that federated 

learning models could achieve accuracy comparable to centralized models across various IoT 

applications, such as smart home automation and environmental monitoring, while 

significantly reducing the volume of data transmitted. 

Communication efficiency is another critical metric for evaluating federated learning 

models. The frequency of model updates and the size of the updates can impact the overall 

system performance, especially in environments with limited bandwidth. Research has shown 

that incorporating techniques such as periodic updates and adaptive communication strategies 

can enhance the efficiency of federated learning systems. For instance, a study conducted by 

Wang et al. (2020) demonstrated that using a dynamic update strategy could reduce 

communication costs by up to 60% while maintaining model accuracy. 

Moreover, computational overhead is an essential consideration in the evaluation of 

federated learning models. Since IoT devices have varying computational capabilities, it is 

crucial to assess how federated learning impacts device performance. A case study on smart 

agricultural systems revealed that federated learning could distribute the computational load 

effectively, allowing devices to participate in model training without overwhelming their 



 

 

resources (Yang et al., 2019). This balance between model complexity and device capabilities 

is vital for the successful deployment of federated learning in IoT environments. 

Another important aspect of evaluation is the robustness of federated learning models 

against data heterogeneity and adversarial attacks. The ability of federated learning to 

generalize across diverse datasets is critical for its application in real-world scenarios. Research 

has indicated that federated learning can effectively handle data disparities, resulting in models 

that are resilient and adaptable to changing conditions (Kairouz et al., 2019). Furthermore, 

incorporating security measures such as differential privacy can enhance the robustness of 

federated learning models against potential attacks, ensuring the integrity of the learning 

process. 

In conclusion, evaluating federated learning models in IoT applications requires a 

comprehensive approach that considers accuracy, communication efficiency, computational 

overhead, and robustness. By systematically assessing these metrics, researchers and 

practitioners can identify the strengths and limitations of federated learning, paving the way 

for its effective implementation in edge computing systems. 

 

5. FUTURE DIRECTIONS AND CHALLENGES 

The future of federated learning in edge computing for IoT applications is promising, 

yet it is accompanied by several challenges that need to be addressed. One of the primary areas 

for future research lies in enhancing the scalability of federated learning systems. As the 

number of IoT devices continues to grow, the ability to efficiently manage and coordinate 

model training across a vast number of devices becomes increasingly crucial. Developing 

decentralized federated learning algorithms that can operate without a central server could be 

a potential solution to this challenge (Zhang et al., 2020). 

Another critical direction for future research is the exploration of hybrid federated 

learning models that can combine the strengths of both centralized and decentralized 

approaches. By leveraging the advantages of centralized data processing while maintaining the 

privacy benefits of federated learning, hybrid models could offer a balanced solution for 

various IoT applications. For instance, in scenarios where real-time decision-making is 

essential, hybrid models could enable rapid data analysis while ensuring data privacy (Liu et 

al., 2021). 

Moreover, addressing the security and privacy concerns associated with federated 

learning is paramount. While techniques such as differential privacy have shown promise, there 

is still a need for more robust security measures to protect against potential adversarial attacks. 
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Future research could focus on developing advanced cryptographic techniques that enhance the 

security of model updates and ensure the integrity of the federated learning process (Bonawitz 

et al., 2017). 

Additionally, the integration of federated learning with emerging technologies such as 

5G and edge AI presents exciting opportunities for enhancing IoT applications. The high 

bandwidth and low latency offered by 5G networks can facilitate more efficient federated 

learning processes, enabling real-time collaboration among devices. Exploring the synergies 

between these technologies could lead to innovative solutions for complex IoT challenges 

(Chen et al., 2020). 

In conclusion, while federated learning holds significant potential for enhancing edge 

computing performance in IoT applications, addressing scalability, security, and integration 

with emerging technologies will be crucial for its successful implementation. Continued 

research and collaboration among academia, industry, and policymakers will be essential to 

unlock the full potential of federated learning in the evolving landscape of IoT. 
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