

# Analysis and Testing of the Combox Web Application System Using Black Box Testing with the Equivalence Partitioning Method

Dini Nurul Azizah<sup>1</sup>, Ibnu Aqil Mahendar<sup>2</sup>, Muhammad Fillah Alfatih<sup>3</sup>, Setiady Ibrahim Anwar<sup>4</sup>, Nabil Malik Al hapid<sup>5</sup>, Aditya Wicaksono<sup>6\*</sup>, Gema Parasti Mindara<sup>7</sup> <sup>1-7</sup>IPB University, Indonesia

Address: Jl. Kumbang No.14, RT.02/RW.06, Bogor - Jawa Barat 16128 Corresponding author : <u>adityawicaksono@apps.ipb.ac.id</u>\*

**Abstract**. This research focuses on evaluating the Combox web application, a digital tool designed to help Food and Beverage (F&B) business owners strengthen their online presence. The analysis was carried out through Black Box Testing, specifically using the Equivalence Partitioning method, to assess core functionalities like login, logout, product management, and pagination. The findings reveal that while most features function as intended, there are issues with product addition and editing, as well as pagination when no data is available. These results highlight areas that need refinement to improve the application's reliability and user experience. In summary, this research supports the advancement of a digital platform that enables F&B businesses to harness technology effectively in today's competitive landscape.

Keywords Black Box Testing, Equivalence Partitioning, Functional Testing, Software Testing

## **1. BACKGROUND**

Application testing plays a crucial role in the development and improvement of an information system. Testing is conducted to ensure that the product produced meets the established standards and specifications. According to Oscar in (MZ, 2016), the purpose of application testing is to create high-quality products that can improve work efficiency. Furthermore, the quality of the application depends heavily on customer or user satisfaction levels (Cholifah et al., 2018). The importance of testing becomes even more apparent with the continuous advancement of technology, which drives digital transformation across various industries, including the Food and Beverage (F&B) industry.

Digital transformation in the Food and Beverage (F&B) industry is essential to face increasingly competitive market pressures. A strong and professional digital presence can enhance customer trust and expand market reach, in line with the needs of modern consumers who rely on online platforms to seek information and interact with businesses. However, many F&B business owners still struggle to optimize their digital presence due to their reliance on traditional systems and offline media. Therefore, there is a need for digital solutions that can effectively support marketing and customer interaction.

The Combox system was developed in response to the challenges of optimizing F&B businesses digitally. Combox is a company profile website designed to enhance the online professional image. This system is equipped with features that provide complete information

about products, services, as well as the company's vision and mission, alongside a responsive interface to support accessibility for users accessing it through smartphones.

This research aims to analyze and test the Combox web application, particularly in terms of software testing carried out during the development of the web application, as well as analyzing its impact on performance and user experience. The results of this research are expected to contribute to the improvement of software development and testing practices in the F&B industry, allowing business owners to maximize the use of digital technology to reach a broader market and enhance their competitiveness.

## 2. THEORITICAL STUDY

#### Analysis

Analysis is the process of thinking conducted to break down a system or object into its smallest parts. The purpose of this activity is to understand the characteristics of each part, the relationships between those parts, and the role or function of each in forming a cohesive whole (Septiani et al., 2020).

### System testing

System testing is an essential element in a broader process often referred to as verification and validation (V&V). Verification consists of steps aimed at ensuring that the software performs specific functions correctly. On the other hand, validation involves other activities focused on ensuring that the developed software truly meets the needs and expectations of the users (Achmad et al., 2020).

## **Black Box Testing**

Black box testing is an application testing method that does not require knowledge of its internal details, such as source code. This testing focuses on the output results based on the given input, without examining the internal parts of the application. In the Black box testing process, testing is carried out by providing various inputs to the application form to ensure whether the application functions according to the needs of the stakeholders.

Black box testing is also known as functional testing or specification-based testing because it only evaluates the application's functions based on external specifications. This method does not involve source code analysis but simply tests whether the application's functions work according to the stakeholders' requirements through observation of its basic elements (Sasongko et al., 2021).

#### **Equivalence Partitioning**

Equivalence Partitioning is a technique in black box testing that divides the input domain of a program into several data groups, allowing the creation of more specific and effective test cases. In this method, test case design is done by evaluating equivalence classes based on input conditions that reflect both valid and invalid data groups. These input conditions can be numbers, ranges of values, or sets of values that are related to each other (Pratama et al., 2023). The main advantage of this method is its broader input coverage, as the selection of representatives from each data group ensures that various scenarios can be thoroughly tested (Nelvi, 2024).

#### **3. RESEARCH METHODS**

The approach used is black box testing, a software testing method that evaluates an application without needing to understand its internal structure or source code. The equivalence partitioning technique is applied by entering data into each form in the application, where each input menu is tested and classified based on whether the data is valid or not. In this equivalence partitioning, the testing process includes input verification, evaluation of valid data groups, observation of the entered data, and ensuring the accuracy of that data (Wibowo et al., 2023).

Below is the interface of the Combox website, which will be the subject of testing, where each element and feature within the site will be tested to ensure functionality, appearance, and performance in accordance with the specifications and user requirements.



Figure 1. Login Page



Figure 2. Admin Page

| No | Test Classes    | Test Case                                                   |  |
|----|-----------------|-------------------------------------------------------------|--|
| 1  | Login           | Correct email input and correct password                    |  |
| 2  | Login           | Email input is incorrect and password is correct            |  |
| 3  | Login           | Input correct email and wrong password                      |  |
| 4  | Login           | Input wrong email and wrong password                        |  |
| 5  | Logout          | Logout from the admin page                                  |  |
| 6  | Create Item     | Add new item with data                                      |  |
| 7  | Update Item     | Update existing items with valid data                       |  |
| 8  | Delete Item     | Deleting the selected item                                  |  |
| 9  | Pagination Menu | Ensure the "Next Prey and data limitation" buttons function |  |

## Table 1. Design of Test Classes and Application Test Items

## 4. RESULT AND DISCUSSION

In this Black Box testing, the examination is only performed on the value of each input entered. One of the advantages of the Black Box method is that the tester does not need to have an in-depth understanding of a specific programming language to conduct the testing (Hidayat et al., 2019).

This design table serves to monitor whether the program meets the user's needs or if there are errors that require corrections to improve the quality of the program. The forms to be tested include the login, logout, and CRUD item forms. Below is a table displaying the results of testing the Combox website.

| No | Test Scenario                                         | Test<br>Code | Expected Results                            | Test Results | Conclusion                                                                                 |
|----|-------------------------------------------------------|--------------|---------------------------------------------|--------------|--------------------------------------------------------------------------------------------|
| 1  | Login with correct<br>email and password              | A01          | Login successful, displays<br>admin page.   | Matches      | Login successful and<br>the system displays<br>the admin page as<br>expected.              |
| 2  | Login with incorrect<br>email and correct<br>password | A02          | Login unsuccessful, stays on login page.    | Matches      | Login unsuccessful,<br>remains on the login<br>page as expected.                           |
| 3  | Login with correct<br>email and incorrect<br>password | A03          | Login unsuccessful, stays on login page.    | Matches      | Login unsuccessful,<br>remains on the login<br>page as expected.                           |
| 4  | Login with incorrect<br>email and password            | A04          | Login unsuccessful, stays on login page.    | Matches      | Login unsuccessful,<br>remains on the login<br>page as expected.                           |
| 5  | Logout from admin<br>page                             | A05          | Logout successful, redirects to login page. | Matches      | Logout successful, and<br>the user is redirected<br>back to the login page<br>as expected. |

Table 2. Black Box Test Scenario for Login and Logout Forms

| No | Test Scenario                | <b>Test Code</b> | Expected Results                 | Test Results   | Conclusion                 |
|----|------------------------------|------------------|----------------------------------|----------------|----------------------------|
| 1  | Display menu data            | B01              | Menu list appears in the table   | Matches        | The menu list appears in   |
|    |                              |                  | with image, title, and price.    |                | the table with the correct |
|    |                              |                  |                                  |                | format, displaying         |
|    |                              |                  |                                  |                | image, title, and price.   |
| 2. | Add product to table         | B02              | New product input available with | Does not match | The "Add Product"          |
|    |                              |                  | image, title, and price, and the |                | button does not respond,   |
|    |                              |                  | product is successfully added to |                | so the input form and      |
|    |                              |                  | the menu table.                  |                | product addition do not    |
|    |                              |                  |                                  |                | function properly.         |
| 3. | Delete product from          | B03              | Selected product items are       | Partially      | The deleted product        |
|    | table                        |                  | deleted with a confirmation or   | matches        | item is successfully       |
|    |                              |                  | delete info.                     |                | removed, but there is a    |
|    |                              |                  |                                  |                | delay and no               |
|    |                              |                  |                                  |                | confirmation or delete     |
|    |                              |                  |                                  | -              | info is shown.             |
| 4. | Edit product data in         | B04              | Selected product items can be    | Does not match | The "Edit" button does     |
|    | table                        |                  | viewed and edited, and changes   |                | not function as            |
|    |                              |                  | can be saved.                    |                | expected.                  |
| 5. | Display number of            | B05              | Items displayed are limited to 5 | Matches        | Data is displayed          |
|    | items per page in pagination |                  | results per table page.          |                | correctly.                 |
|    | pagmation                    |                  |                                  |                |                            |
| 6. | Navigate to next page        | B06              | Displays the next 5 items in the | Matches        | Data is displayed          |
|    | in pagination                |                  | table.                           |                | correctly.                 |
| 7. | Navigate to previous         | B07              | Returns to the previous 5 items  | Matches        | Data is displayed          |
|    | page in pagination           |                  | in the table.                    |                | correctly.                 |
|    |                              |                  |                                  |                |                            |
| 8. | Pagination still             | B08              | Pagination remains displayed     | Does not match | Pagination disappears      |
|    | functions when no data       |                  | when there is no data.           |                | when there is no data.     |
|    |                              |                  |                                  |                |                            |
| I  |                              |                  |                                  | l              |                            |

| Table 3. Black Box Test Scenario for the Admin Page | Table 3 | . Black | Box Tes | st Scenario | for the | <b>Admin Page</b> |
|-----------------------------------------------------|---------|---------|---------|-------------|---------|-------------------|
|-----------------------------------------------------|---------|---------|---------|-------------|---------|-------------------|

From the test scenario results, the validity level of the tests was successfully achieved, as shown in Table 1. In the tested scenario, there are results with varying outcomes represented in the table below.

| Scenario | Valid Test Case (%) |
|----------|---------------------|
| A01      | 100                 |
| A02      | 100                 |
| A03      | 100                 |
| A04      | 100                 |
| A05      | 100                 |
| B01      | 100                 |
| B02      | 0                   |
| B03      | 50                  |
| B04      | 0                   |
| B05      | 100                 |
| B06      | 100                 |
| B07      | 100                 |
| B08      | 0                   |

## Table 4. Evaluation result

The graph shown in Figure 3 displays the evaluation of software testing using the Black Box Testing approach on the Combox website. These results align with the system requirements implemented. These results may change depending on the level of system requirements that have been identified.

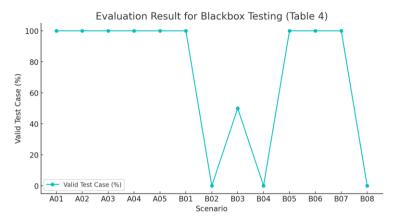



Figure 3. Black box testing graph.

#### **5. CONCLUSION**

Based on the testing of the Combox application using Black Box testing with one of the techniques, Equivalence Partitioning, several important results were obtained. The testing focused on the core functionalities of the application, including login, logout, data manipulation (CRUD), and pagination features. The testing showed that basic features such as login, logout, and pagination generally functioned as expected. However, there were some issues with functions like adding and editing products, which did not perform as intended. This indicates that the application still requires some improvements to meet the desired specifications. Additionally, pagination needs to be fixed to function properly when no data is displayed.

Based on the evaluation results, the testing of the Combox application using the equivalence partitioning technique showed that out of a total of 13 test cases, 9 test cases were successful, resulting in an effectiveness rate of 69.23%. Most of the test scenarios for the login, logout, and menu data display features achieved the expected results with a validation rate of 100%. However, some features, such as adding and editing products, experienced failures with low validation rates, ranging from 0% to 50%. This indicates a gap that needs to be addressed in the application's development, particularly for more complex features. The main focus of improvements should be on the stability and reliability of the CRUD and pagination features to ensure the application better meets user needs. Overall, the test results suggest that the Combox application is close to meeting the expected specifications, but further improvements are necessary to enhance its overall stability and functionality.

#### REFERENCES

- Achmad, Y. F., & Yulfitri, A. (2020). Pengujian sistem pendukung keputusan menggunakan black box testing studi kasus e-wisudawan di Institut Sains dan Teknologi Al-Kamal. Jurnal Ilmu Komputer, 5(1), 42. <u>https://doi.org/10.47007/komp.v5i01.4615</u>
- Cholifah, W. N., Yulianingsih, Y., & Sagita, S. M. (2018). Pengujian black box testing pada aplikasi action & strategy berbasis android dengan teknologi phonegap. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 3(2), 206-210. http://dx.doi.org/10.30998/string.v3i2.3048
- Hidayat, T., & Muttaqin, M. (2018). Pengujian sistem informasi pendaftaran dan pembayaran wisuda online menggunakan black box testing dengan metode equivalence partitioning dan boundary value analysis. *Jutis (Jurnal Teknik Informatika)*, 6(1), 25-29. https://doi.org/10.33592/jutis.Vol6.Iss1.38
- MZ, M. K. (2016). Pengujian perangkat lunak metode black-box berbasis equivalence partitions pada aplikasi sistem informasi sekolah. *MIKROTIK: Jurnal Manajemen Informatika*, 6(1).
- Nelvi, A. A. (2024). Pengujian aplikasi employee self service menggunakan metode state transition testing dan equivalence partitioning (Bachelor's thesis, IPB University). https://repository.ipb.ac.id/handle/123456789/158922
- Pratama, S. D., Lasimin, L., & Dadaprawira, M. N. (2023). Pengujian black box testing pada aplikasi edu digital berbasis website menggunakan metode equivalence dan boundary value. Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, 6(2), 560-569. https://doi.org/10.53513/jsk.v6i2.8166
- Sasongko, B. B., Malik, F., Ardiansyah, F., Rahmawati, A. F., Adhinata, F. D., & Rakhmadani, D. P. (2021). Pengujian blackbox menggunakan teknik equivalence partitions pada aplikasi petgram mobile. *Journal Ictee*, 2(1), 10-16. https://doi.org/10.33365/jictee.v2i1.1012
- Septiani, Y., Aribbe, E., & Diansyah, R. (2020). Analisis kualitas layanan sistem informasi akademik Universitas Abdurrab terhadap kepuasan pengguna menggunakan metode servqual (Studi kasus: Mahasiswa Universitas Abdurrab Pekanbaru). Jurnal Teknologi dan Open Source, 3(1), 131-143. https://doi.org/10.36378/jtos.v3i1.560
- Wibowo, P. H., Dike, R. W., Hidayat, A., & Saifudin, A. (2023). Pengujian sistem informasi lembaga donasi berbasis web menggunakan metode black box testing dan teknik equivalence partitions. OKTAL: Jurnal Ilmu Komputer dan Sains, 2(06), 1760-1763.