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Abstract: Power systems are critical infrastructure that face significant challenges due to increasing demand and 

inherent complexity. Predicting failures in power systems is crucial for enhancing grid reliability, minimizing 

downtime, and optimizing maintenance processes. This study evaluates various deep learning models, specifically 

convolutional neural networks (CNN), recurrent neural networks (RNN), and transformer models, for predicting 

power system failures. By analyzing these models’ performance metrics on historical power grid data, the study 

provides insights into the strengths and weaknesses of each approach. The findings contribute to the development 

of more robust predictive models for power system reliability. 
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1. INTRODUCTION 

Power systems form the backbone of modern infrastructure, supporting critical services 

and enabling economic activity. However, the reliability of these systems is increasingly 

strained by aging infrastructure, growing demand, and the need for more resilient grids. 

Accurate predictive models are essential for forecasting system failures, enabling proactive 

maintenance, and ensuring consistent service delivery. 

This study investigates the application of deep learning models in predicting power 

system failures. We focus on CNNs, RNNs, and transformer models due to their proven 

effectiveness in handling time-series data and complex features. By conducting a comparative 

analysis, we aim to highlight which model offers superior performance for failure prediction 

in power systems. 

 

2. LITERATURE REVIEW 

Deep learning has advanced predictive modeling in numerous fields, including 

healthcare, finance, and engineering. In power systems, traditional methods often rely on 

statistical models, which may not capture the complexity of large datasets or the temporal 

dependencies needed for accurate prediction. Recent studies demonstrate the value of deep 

learning models in capturing intricate patterns in power system data. For instance: 

a. CNNs have been effective in handling spatial data and extracting features from grid 

structures. 

b. RNNs, especially Long Short-Term Memory (LSTM) networks, address temporal 

dependencies in sequential data. 
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c. Transformers, with their attention mechanisms, provide high accuracy in complex, 

time-sensitive applications. 

d. The review draws on previous research, showing the evolving focus from simpler 

models to more sophisticated architectures for enhancing prediction accuracy and 

computational efficiency. 

 

3. METHODOLOGY 

Data Collection 

Historical power grid data was obtained from multiple sources, including SCADA 

systems and open-source power system repositories. The data was preprocessed to address 

missing values, outliers, and normalization. 

Model Architecture 

Convolutional Neural Network (CNN): CNNs were used for capturing spatial 

relationships within the grid data, focusing on regions with high failure probabilities. 

Recurrent Neural Network (RNN) with LSTM cells: RNNs with LSTM units were 

implemented to handle the sequential nature of failure prediction data, preserving long-

term dependencies. 

Transformer Model: Transformer architectures were employed due to their 

robustness in learning long-term dependencies with higher efficiency in large datasets. 

Performance Metrics 

Models were evaluated based on accuracy, F1 score, precision, recall, and 

computational efficiency. 

 

4. RESULTS AND DISCUSSION 

CNN Performance 

The CNN model showed significant accuracy in identifying grid regions prone to 

failure, leveraging spatial feature extraction. However, its prediction capacity was limited 

in capturing long-term dependencies across temporal sequences. 

RNN with LSTM Performance 

RNN models with LSTM cells performed well with sequential data, especially in 

time-sensitive failure prediction. The drawback was increased computational demand and 

susceptibility to vanishing gradient problems in longer sequences. 

Transformer Model Performance 



 

 

The transformer model outperformed the other architectures, particularly in 

balancing accuracy and computational efficiency. Its attention mechanism allowed it to 

focus on critical parts of the data, capturing long-term dependencies effectively without the 

need for recurrence. 

 

5. CONCLUSION AND FUTURE WORK 

The study highlights the transformer model's potential in predicting power system 

failures due to its efficiency and accuracy in managing complex temporal dependencies. Future 

research should focus on hybrid models combining CNNs and transformers to enhance spatial-

temporal feature extraction. Moreover, more extensive datasets and domain-specific 

optimizations could further improve prediction accuracy. 
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