Development of Hand Gesture Detection Application for Slap Mosquito Game Based on Image Processing
DOI:
https://doi.org/10.62951/ijeemcs.v1i4.108Keywords:
Hand Gesture Recognition, Image Processing, Rapid Application Development (RAD), Detection Accuracy, System ResponsivenessAbstract
The development of technology with digital image processing is often utilized to solve various problems in image processing, such as facial recognition, object detection, and interaction between users. In this study, we developed an interactive hand gesture-based game titled "Slap Mosquito" that utilizes image processing techniques to control the game through hand gestures. Using Rapid Application Development (RAD), Python, OpenCV, and Pygame methodologies, this game allows users to slap mosquitoes virtually in real-time through hand gesture recognition that is read by the camera and translated into in-game actions. RAD allows rapid development iterations and improvements based on user feedback, which is essential for improving system responsiveness and accuracy. This study focuses on detection precision, system responsiveness, and the impact of lighting on game performance, as measured using frames per second (FPS) and user gameplay results. The test results show that optimal lighting meets high detection accuracy, while low lighting conditions have a negative impact on accuracy and responsiveness. The results of this study provide insights for further development of gesture-based applications, especially regarding the importance of optimizing technical parameters and RAD methodology in improving user experience.
References
Al Farid, Fahmid, Noramiza Hashim, Junaidi Abdullah, Md Roman Bhuiyan, Wan Noor Shahida Mohd Isa, Jia Uddin, Mohammad Ahsanul Haque, and Mohd Nizam Husen. 2022. “A Structured and Methodological Review on Vision-Based Hand Gesture Recognition System.” Journal of Imaging 8(6):153. doi: 10.3390/jimaging8060153.
Budiman, Saiful Nur, Sri Lestanti, Suji Marselius Evvandri, and Rahma Kartika Putri. 2022. “PENGENALAN GESTUR GERAKAN JARI UNTUK MENGONTROL VOLUME DI KOMPUTER MENGGUNAKAN LIBRARY OPENCV DAN MEDIAPIPE.” Antivirus : Jurnal Ilmiah Teknik Informatika 16(2):223–32. doi: 10.35457/antivirus.v16i2.2508.
Fadhliana, Nisa Rizqiya, Yunita Putri Arinda, and Eny Maria. 2022. “Perancangan Aplikasi Virtual Tour Program Studi TRPL Di Politani Samarinda Berbasis Hand Motion Tracking.” Jurnal Sains Dan Informatika 8(1):1–10. doi: 10.34128/jsi.v8i1.343.
Farida, Lufiatul. 2023. “KOMPARASI METODE DETEKSI TEPI DENGAN METODE SOBEL DAN PREWITT PADA PENGOLAHAN CITRA DAUN.” Jurnal Teknologi Pintar 3(10).
Fergina, Anggun, Alun Sujjada, and Fadillah Alviqih. 2023. “Implementasi Sistem Informasi Akademik Menerapkan Metode Rapid Application Development.” KLIK: Kajian Ilmiah Informatika Dan Komputer 3(6):1310–19. doi: 10.30865/klik.v3i6.854.
Mujahid, Abdullah, Mazhar Javed Awan, Awais Yasin, Mazin Abed Mohammed, Robertas Damaševičius, Rytis Maskeliūnas, and Karrar Hameed Abdulkareem. 2021. “Real-Time Hand Gesture Recognition Based on Deep Learning YOLOv3 Model.” Applied Sciences 11(9):4164. doi: 10.3390/app11094164.
Naufal, Mohammad Farid, and Selvia Ferdiana Kusuma. 2023. “Analisis Perbandingan Algoritma Machine Learning Dan Deep Learning Untuk Klasifikasi Citra Sistem Isyarat Bahasa Indonesia (SIBI).” Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK) 10(4):873–82.
Oudah, Munir, Ali Al-Naji, and Javaan Chahl. 2020. “Hand Gesture Recognition Based on Computer Vision: A Review of Techniques.” Journal of Imaging 6(8):73. doi: 10.3390/jimaging6080073.
Rusmawan, Uus. 2022. “Sistem Informasi Koperasi Menggunakan Metode Rapid Application Development (RAD).” Journal of Information System and Technology 1(1):1–10. doi: 10.56916/jistec.v1i1.80.
Sani, Abdullah, and Suci Rahmadinni. 2022. “Deteksi Gestur Tangan Berbasis Pengolahan Citra.” Jurnal Rekayasa Elektrika 18(2). doi: 10.17529/jre.v18i2.25147.
Saputra, Windi, and Susanto Hariyanto. 2024. “IMPLEMENTASI HAND GESTURE MEDIAPIPE PADA GAME INTERAKTIF UNTUK STIMULASI MOTORIK ANAK DOWN SYNDROME PADA SEKOLAH LUAR BIASA AUTIS KALIMANTAN BARAT.” JATI (Jurnal Mahasiswa Teknik Informatika) 8(5):10776–84. doi: 10.36040/jati.v8i5.11127.
Sarma, Debajit, and M. K. Bhuyan. 2021. “Methods, Databases and Recent Advancement of Vision-Based Hand Gesture Recognition for HCI Systems: A Review.” SN Computer Science 2(6):436. doi: 10.1007/s42979-021-00827-x.
Utami, Ersi Putri, and Afrizal Zein. 2023. “Perancangan Sistem Informasi Reservasi Meja Kafe Menggunakan Metode Rad Rapid Application Development Berbasis Web (Studi Kasus : Cafetaria Citra Sawangan Depok).” Engineering and Technology International Journal 5(02):108–16. doi: 10.55642/eatij.v5i02.346.
Wu, Bi-Xiao, Chen-Guang Yang, and Jun-Pei Zhong. 2021. “Research on Transfer Learning of Vision-Based Gesture Recognition.” International Journal of Automation and Computing 18(3):422–31. doi: 10.1007/s11633-020-1273-9.
Wulandari, Pradipta Sekar Ayu Putri, Kurniawan Teguh Martono, and Ike Pertiwi Windasari. 2020. “Pengembangan Sistem Pendeteksi Gesture Angka Pada Tangan Secara Realtime Berbasis Android.” Edu Komputika Journal 7(1):1–9. doi: 10.15294/edukomputika.v7i1.38655.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Electrical Engineering, Mathematics and Computer Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.