Automatic Passenger Counting System on Public Buses Using CNN YOLOv8 Model for Passenger Capacity Optimization
DOI:
https://doi.org/10.62951/ijies.v1i4.121Keywords:
Passenger Counting, YOLOv8, Public Transportation, Real-time Detection, Convolutional Neural Networks (CNN)Abstract
This study presents the development of an automatic passenger counting system for public buses using YOLOv8 based on Convolutional Neural Networks (CNN). The system detects and counts passengers in real-time to optimize bus capacity and enhance operational efficiency. Results indicate that the system achieves high accuracy in the front camera view (confidence score of 0.82). However, in the rear camera view the accuracy slightly decreases (confidence score of 0.76) due to object overlap, emphasizing the importance of proper camera placement. The system offers potential improvements in bus capacity management, reduced operational costs, and enhanced passenger comfort. These findings contribute to advancing smarter and more efficient public transportation systems.
References
Arruda, M. dos S. de, Osco, L. P., Acosta, P. R., Gonçalves, D. N., Marcato, J. Jr., Ramos, A. P. M., Matsubara, E. T., Luo, Z., Li, J., Silva, J. de A., & Gonçalves, W. N. (2022). Counting and locating high-density objects using convolutional neural network. arXiv. https://doi.org/10.1016/j.eswa.2022.116555
Cherrier, N., Rérolle, B., Graive, M., Dib, A., & Schmitt, E. (2023). Context-aware automated passenger counting data denoising. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1935–1942). IEEE.
Choi, H., Fujimoto, M., Matsui, T., Misaki, S., & Yasumoto, K. (2022). Wi-CaL: WiFi sensing and machine learning based device-free crowd counting and localization. IEEE Access, 10, 24395–24410. https://doi.org/10.1109/ACCESS.2022.3155812
Gao, G., Gao, J., Liu, Q., Wang, Q., & Wang, Y. (2020). CNN-based density estimation and crowd counting: A survey. arXiv.
Gao, M., Souri, A., Zaker, M., Zhai, W., Guo, X., & Li, Q. (2023). A comprehensive analysis for crowd counting methodologies and algorithms in the Internet of Things. Cluster Computing. https://doi.org/10.1007/s10586-023-03987-y
Gu, Y., & Sinnot, R. O. (2023). Real-time vehicle passenger detection through deep learning. In 2023 IEEE 19th International Conference on e-Science (e-Science) (pp. 1–10). IEEE.
Hussain, M. (2024). YOLOv5, YOLOv8, and YOLOv10: The go-to detectors for real-time vision.
Khan, M. A., Godavarthy, R. P., Motuba, D., & Mattson, J. (2024). Understanding the effects of transportation and perceived built environment on community and individual well-being in the United States. https://doi.org/10.21203/rs.3.rs-4760374/v1
Kusuma, T. A. A. H., Usman, K., & Saidah, S. (2021). People counting for public transportations using You Only Look Once method. Jurnal Teknik Informatika (Jutif), 2(1), 57–66. https://doi.org/10.20884/1.jutif.2021.2.2.77
Milanovic, A., Jovanovic, L., Zivkovic, M., Bacanin, N., Cajic, M., & Antonijevic, M. (2024). Exploring pre-trained model potential for reflective vest real-time detection with YOLOv8 models. In 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC) (pp. 1210–1216). IEEE.
Mirnig, A. G., Gärtner, M., Wallner, V., Füssl, E., Ausserer, K., Rieß, J., & Meschtscherjakov, A. (2021). Mind the seat limit: On capacity management in public automated shuttles. Frontiers in Human Dynamics, 3. https://doi.org/10.3389/fhumd.2021.689133
Pravallika, A., Kumar, C. A., Praneeth, E. S., Abhilash, D., & Priya, G. S. (2024). Efficient vehicle detection system using YOLOv8 on Jetson Nano board. In 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS) (pp. 1–6). IEEE.
Radovan, A., Đambić, G., & Mihaljević, B. (2024). A review of passenger counting in public transport concepts based on image processing and machine learning. https://doi.org/10.20944/preprints202407.0263.v1
Rakhymova, A., Mussina, A., Aubakirov, S., & Cândido Da Silva, P. M. T. (2024). Development of an intelligent passenger counting system for enhancing public transport efficiency and optimizing route networks. Journal of Problems in Computer Science and Information Technologies, 2(1). https://doi.org/10.26577/jpcsit2024020101
Rathi, S., Mirajkar, O., Shukla, S., Deshmukh, L., & Dangare, L. (2024). Advancing crack detection using deep learning solutions for automated inspection of metallic surfaces. Indian Journal of Information Sources and Services, 14(1), 93–100. https://doi.org/10.51983/ijiss-2024.14.1.4003
Rawat, N., Rai, A., & Agarwal, A. (2024). Deep learning-based passenger counting system using surveillance cameras. In 2024 16th International Conference on Communication Systems & Networks (COMSNETS) (pp. 234–239). IEEE.
Ren, P., Wang, L., Fang, W., Song, S., & Djahel, S. (2020). A novel squeeze YOLO-based real-time people counting approach. International Journal of Bio-Inspired Computation, 16(2), 94–101.
Sawant, V., Thorat, T., Ninawe, T., Gulle, Y., & Upparna, A. (2023). Bus headcount analysis app using deep learning. In 2023 World Conference on Communication & Computing (WCONF) (pp. 1–6). IEEE.
Suryobuwono, A. A., Raga, P., Nugroho, A., Tampubolon, I. A., Basalamah, R. A. Z., & Irenita, N. (2021). Analisis prioritas pengembangan moda transportasi umum di DKI Jakarta. Jurnal Sistem Transportasi & Logistik, 1(2).
Ye, J., Wu, Y., & Rong, W. (2024). Based on the optimization and performance evaluation of YOLOv8 object detection model with multi-backbone network fusion. In 2024 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 269–274). IEEE.
Zhang, J., Chen, S., Tian, S., Gong, W., Cai, G., & Wang, Y. (2021). A crowd counting framework combining with crowd location. Journal of Advanced Transportation, 2021, 1–14. https://doi.org/10.1155/2021/6664281
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Information Engineering and Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.