Optimizing Shortest Job First (SJF) Scheduling through Random Forest Regression for Accurate Job Execution Time Prediction

Authors

  • Aditya Putra Ramdani Universitas Muhammadiyah Semarang
  • Achmad Solichan Universitas Muhammadiyah Semarang
  • Basirudin Ansor Universitas Muhammadiyah Semarang
  • Muhammad Zainudin Al Amin Universitas Muhammadiyah Semarang
  • Nova Christina Sari Universitas Muhammadiyah Semarang
  • Kilala Mahadewi Universitas Muhammadiyah Semarang

DOI:

https://doi.org/10.62951/ijies.v1i3.138

Keywords:

CPU Scheduling, Execution Time Prediction, Machine Learning, Random Forest Regression, Shortest Job First

Abstract

One of the CPU scheduling methods that is frequently used to reduce waiting time and average execution time is Shortest Job First (SJF). However, this algorithm's accuracy is largelbravy dependent on how well the job execution time is predicted. The purpose of this study is to enhance work execution time estimates by optimizing the SJF algorithm through the use of the Random Forest Regression model. The model in this study is trained using historical job data. The test results demonstrate how Random Forest Regression may be included into SJF to greatly increase system efficiency, especially in terms of throughput and waiting time reduction.

References

Bambang Banu Siswoyo (2020). Multi Class Decision Forest Machine Learning Artificial Intelligence. Journal of Applied Informatics and Computing.

Dixitvibhu (2023). Enhancing Shortest Job First (SJF) with Machine Learning: Bridging Gap between Theory and Practice. Medium.

I. C. Suherman, R. Sarno and Sholiq, "Implementation of Random Forest Regression for COCOMO II Effort Estimation," 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 2020, pp. 476-481, doi: 10.1109/iSemantic50169.2020.9234269. keywords: {effort estimation;COCOMO II; Random Forest Regression}

J. Doe (2020). Random Forest Regression for Online Capacity Estimation of Lithium-Ion Batteries. Journal of Power Sources.

Lv, X., & Chen, L. (2020, August). Process Scheduling Model Based on Random Forest. In The International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (pp. 791-799). Cham: Springer International Publishing.

N. Azizah, L. S. Riza, Y. Wihardi (2019). Implementation of Random Forest Algorithm with Parallel Computing. Journal of Physics: Conference Series Vol. 1280

Nugraha, A. F., Aziza, R. F. A., & Pristyanto, Y. (2022). Penerapan metode stacking dan random forest untuk meningkatkan kinerja klasifikasi pada proses deteksi web phishing. Jurnal Infomedia: Teknik Informatika, Multimedia, dan Jaringan, 7(1), 39-44.

Omar, Hoger K., Kamal H. Jihad, and Shalau F. Hussein (2021). "Comparative analysis of the essential CPU scheduling algorithms." Bulletin of Electrical Engineering and Informatics.

Panda, A. R., Sirmour, S., & Mallick, P. K. (2022). Real-Time CPU Burst Time Prediction Approach for Processes in the Computational Grid Using ML. In Advances in Intelligent Computing and Communication: Proceedings of ICAC 2021 (pp. 551-562). Singapore: Springer Nature Singapore.

Panwar, S. S., Rauthan, M. M. S., Barthwal, V., Mehra, N., & Semwal, A. (2024). Machine learning approaches for efficient energy utilization in cloud data centers. Procedia Computer Science, 235, 1782-1792.

Prathamesh Samal, Sagar Jha, Raman Kumar (2022). CPU Burst Time Estimation using Machine Learning. Conference: 2022 IEEE Delhi Section Conference (DELCON).

R.T. Gomez, C.M. Bermudez, Villy K.G.C. (2020). End to End Dynamic Round Robin (E-EDRR) Scheduling Algorithm Utilizing Shortest Job First Analysis. ICCMB ’20, 218-221

Sudarshan M.G., Vinutha M.R., Amrutha Lakhsmi, Nischith Gowda D.Y. (2024). Predictive Model of CPU Burst Time in Computational Grids: A Comparative Study of Machine Learning Approaches. World Journal of Engineering Research and Technology.

Wang, H., Dai, YQ., Yu, J. et al. Predicting running time of aerodynamic jobs in HPC system by combining supervised and unsupervised learning method. Adv. Aerodyn. 3, 22 (2021). https://doi.org/10.1186/s42774-021-00077-8

Wei, X. (2020). Task scheduling optimization strategy using improved ant colony optimization algorithm in cloud computing. Journal of Ambient Intelligence and Humanized Computing, 1-12.

Yoga Septian, Ucuk Darusalam, Agus Iskandar (2022). Implementasi Algoritma Genetika pada Perancangan Aplikasi Penjadwalan Instalasi Antivirus Berbasis Website menggunakan Metode Waterfall. Jurnal JTIK Vol 6 No.1 Pages 125-137

Yonghao Cao, Huaqiang Yuan, Fengyao Hou, and Jianshu Hong. 2024. Regression-Classification Parallel Prediction: An Online Learning Optimization for Job Scheduling Backfill Algorithm. In 2024 8th International Conference on High Performance Compilation, Computing and Communications (HP3C 2024), June 07--09, 2024, Guangzhou, China. ACM, New York, NY, USA 6 Pages. https://doi.org/10.1145/3675018.3675775

Downloads

Published

2024-08-31

How to Cite

Aditya Putra Ramdani, Achmad Solichan, Basirudin Ansor, Muhammad Zainudin Al Amin, Nova Christina Sari, & Kilala Mahadewi. (2024). Optimizing Shortest Job First (SJF) Scheduling through Random Forest Regression for Accurate Job Execution Time Prediction. International Journal of Information Engineering and Science, 1(3), 39–49. https://doi.org/10.62951/ijies.v1i3.138

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.