Using Natural Language Processing to Enhance Customer Sentiment Analysis in Ecommerce
DOI:
https://doi.org/10.62951/ijies.v1i2.90Keywords:
Natural Language Processing, sentiment analysis, ecommerce, customer experience, BERT, transformer modelsAbstract
Customer sentiment analysis provides valuable insights for ecommerce businesses, but traditional methods often fall short in handling complex and contextrich language. This paper explores the use of Natural Language Processing (NLP) techniques, including BERT and transformer models, to improve sentiment analysis accuracy in ecommerce. The study compares the performance of different NLP models in capturing nuanced customer sentiment from online reviews. Findings indicate that advanced NLP techniques substantially increase accuracy and offer practical applications for improving customer experience and business strategy in ecommerce.
Keywords: Natural Language Processing, sentiment analysis, ecommerce, customer experience, BERT, transformer models.
References
Akhtar, F., & Verma, S. (2020). An integrated framework for customer sentiment analysis in ecommerce using deep learning. International Journal of Innovative Technology and Exploring Engineering, 9(6), 17581764. doi:10.35940/ijitee.F4556.059620
Alshahrani, S. M., & Alhussan, M. A. (2020). Sentiment analysis for customer review in ecommerce using NLP techniques: A review. Journal of King Saud University Computer and Information Sciences. doi:10.1016/j.jksuci.2020.08.002
Bhatia, P., & Singh, A. (2019). Enhancing customer satisfaction through sentiment analysis in ecommerce: A case study of Amazon. International Journal of Information Technology, 11(1), 151157. doi:10.1007/s4187001801425
Cambria, E., & Hussain, A. (2015). Sentic Computing: A CommonSenseBased Framework for Sentiment Analysis. In Sentiment Analysis and Knowledge Engineering (pp. 127). Springer. doi:10.1007/9783319052502_1
Dey, L., & Das, S. (2019). Sentiment analysis of ecommerce reviews using natural language processing: A survey. International Journal of Engineering and Advanced Technology, 8(5), 475481. doi:10.35940/ijeat.E8869.058520
Ghani, U., & Haider, S. I. (2020). Role of natural language processing in enhancing sentiment analysis in ecommerce. International Journal of Computer Applications, 975, 09758887. doi:10.5120/ijca2020920509
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on HumanCentered Informatics, 5(1), 1167. doi:10.2200/S00476ED1V01Y201204HCI016
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(12), 1135. doi:10.1561/1500000001
Poria, S., Hu, B., & Huang, G. B. (2019). A deeper look into sentiment analysis: Natural language processing and machine learning perspectives. IEEE Transactions on Neural Networks and Learning Systems, 30(9), 27072722. doi:10.1109/TNNLS.2018.2804383
Purohit, H., & Gohil, K. (2020). Emotion detection in customer reviews using NLP techniques. International Journal of Information Technology, 12(2), 515520. doi:10.1007/s4187002000402y
Rani, P., & Gupta, N. (2021). Customer sentiment analysis in ecommerce: A natural language processing approach. Journal of Computer Networks and Communications, 2021, 112. doi:10.1155/2021/5568691
Singh, A. P., & Gohil, K. (2020). Review on sentiment analysis of customer reviews in ecommerce. Journal of King Saud University Computer and Information Sciences. doi:10.1016/j.jksuci.2020.06.008
Waseem, A., & Hossain, M. S. (2018). A comparative study of machine learning and deep learning methods for sentiment analysis in ecommerce. International Journal of Computer Applications, 975, 09758887. doi:10.5120/ijca2018918237
Zhang, Y., & Wang, S. (2018). A survey on sentiment analysis in ecommerce: Current trends and future directions. International Journal of Information Technology & Decision Making, 17(4), 12071234. doi:10.1142/S0219622018400134
Zhang, Z., & Wang, Y. (2020). An improved method for customer sentiment analysis in ecommerce based on deep learning. Journal of Electronic Commerce Research, 21(3), 254267.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Information Engineering and Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.