Multiclass Meat Classification Using a Hybrid Machine Learning Approach
DOI:
https://doi.org/10.62951/ijcts.v2i2.238Keywords:
Classification, Image, MobileNetV2, RGB, SVMAbstract
Image classification is a key field in digital image processing with broad applications, such as object recognition and disease detection. The use of artificial neural network architectures, such as MobileNetV2, has significantly advanced pattern recognition in large datasets. However, in small datasets, challenges related to accuracy and generalization are often encountered. This study explores an RGB-based approach utilizing MobileNetV2 for image feature extraction and Support Vector Machine (SVM) as the classifier. MobileNetV2 is applied to extract features from RGB images, which are then further processed by SVM to determine image classes. The results indicate that this model achieves an accuracy of 91.67%, precision of 0.9163, recall of 0.9167, and F1-score of 0.9161. Based on the confusion matrix analysis, the model effectively distinguishes between classes, despite slight overlaps. This research contributes to the development of intelligent image classification systems that can be applied in various fields, including the food industry. With these achievements, the RGB approach integrating MobileNetV2 and SVM has proven effective in enhancing image classification accuracy, even with relatively small datasets. These findings open opportunities for applying similar methods in other image processing tasks that require high accuracy in object or disease detection and classification.
References
Bansal, M., Kumar, M., Sachdeva, M., & Mittal, A. (2023). Transfer learning for image classification using VGG19: Caltech-101 image data set. Journal of Ambient Intelligence and Humanized Computing, 1–12.
Budi, E. S., Chan, A. N., Alda, P. P., & Idris, M. A. F. (2024). Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network. Resolusi: Rekayasa Teknik Informatika Dan Informasi, 4(5), 502–509.
Cahyo, E. N., Susanti, E., & Ariyana, R. Y. (2023). Model Machine Learning Untuk Klasifikasi Kesegaran Daging Menggunakan Arsitektur Transfer Learning Xception. Jurnal Sistem Dan Teknologi Informasi (JustIN), 11(2), 371. https://doi.org/10.26418/justin.v11i2.57517
Christyono, Y., & others. (2024). Image Classification of Meat Using Support Vector Machine Method. Journal of International Multidisciplinary Research, 2(6), 200–204.
Dani, A. R., & Handayani, I. (2024). Klasifikasi Motif Batik Yogyakarta Menggunakan Metode GLCM dan CNN. Jurnal Teknologi Terpadu, 10(2), 142–156.
Dinesh, P., Vickram, A. S., & Kalyanasundaram, P. (2024). Medical image prediction for diagnosis of breast cancer disease comparing the machine learning algorithms: SVM, KNN, logistic regression, random forest and decision tree to measure accuracy. AIP Conference Proceedings, 2853(1).
Hidayat, T. (2025). IDENTIFIKASI MORFOLOGI CITRA DAGING MENGGUNAKAN TEKNIK PENGOLAHAN CITRA DIGITAL. JATI (Jurnal Mahasiswa Teknik Informatika), 9(1), 1580–1586.
Hidayat, T., Saputri, D. U. E., & Aziz, F. (2022). MEAT IMAGE CLASSIFICATION USING DEEP LEARNING WITH RESNET152V2 ARCHITECTURE. Jurnal Techno Nusa Mandiri, 19(2), 131–140. https://doi.org/10.33480/techno.v19i2.3932
Ilmadina, H. Z., Naufal, M., & Wibowo, D. S. (2023). Drowsiness Detection Based on Yawning Using Modified Pre-trained Model MobileNetV2 and ResNet50. MATRIK: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(3), 419–430.
Indraswari, R., Rokhana, R., & Herulambang, W. (2022). Melanoma image classification based on MobileNetV2 network. Procedia Computer Science, 197, 198–207.
Kurniawan, D., & Ariatmanto, D. (2024). IDENTIFIKASI VARIETAS BIBIT DURIAN MENGGUNAKAN MOBILENETV2 BERDASARKAN GAMBAR DAUN. Jurnal Informatika Dan Rekayasa Elektronik, 7(2), 231–240.
Lasniari, S., Sanjaya, S., Yanto, F., & Affandes, M. (2022). Pengaruh Hyperparameter Convolutional Neural Network Arsitektur ResNet-50 Pada Klasifikasi Citra Daging Sapi dan Daging Babi. Universitas Islam Negeri Sultan Syarif Kasim Riau Jl. H.R Soebrantas No. 155 KM, 5(3), 28293.
Ma, C., Liu, Y., Deng, J., Xie, L., Dong, W., & Xu, C. (2023). Understanding and mitigating overfitting in prompt tuning for vision-language models. IEEE Transactions on Circuits and Systems for Video Technology, 33(9), 4616–4629.
Nurhalisa, W. S., Sajiah, A. M., & Saputra, R. A. (2025). IDENTIFIKASI CITRA DAGING AYAM BERFORMALIN MENGGUNAKAN FITUR WARNA HUE SATURATION VALUE (HSV) DAN ALGORITMA K-NEAREST NEIGHBOR (K-NN). JATI (Jurnal Mahasiswa Teknik Informatika), 9(1), 1160–1167.
Ramadhan, E., Akbar, S., Al-Farizi, M. F., & Agustin, T. (2024). Klasifikasi Tingkat Keparahan Penyakit Leaf Blast pada Tanaman Padi menggunakan EfficientNetB0 menggunakan Optimasi CLAHE. Prosiding Seminar Nasional Amikom Surakarta, 2, 429–440.
Susanto, L. A., Nilogiri, A., & Handayani, L. (2023). Klasifikasi Citra Lesi Kulit Serupa Virus Monkeypox Menggunakan VGG-19 Convolutional Neural Network. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 8(1), 1–9.
Tirtana, A., & Irawan, R. S. (2024). Implementasi Convolutional Neural Network dengan Arsitektur MobileNetV2 Untuk Pengklasifikasi Kesegeran Daging. DoubleClick: Journal of Computer and Information Technology, 8(1), 41–47.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computer Technology and Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.