Sentiment Analysis Of Social Media Data Using Deep Learning Techniques

Authors

  • Salsabila Septiani Institut Teknologi Sepuluh Nopember
  • Nabila Putri Institut Teknologi Sepuluh Nopember
  • Dara Jessica Institut Teknologi Sepuluh Nopember
  • Arya Saputra Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.62951/ijcts.v1i2.59

Keywords:

Sentiment analysis, Social media, Deep learning, Convolutional neural network, Recurrent neural network

Abstract

Social media platforms contain vast amounts of data that can reveal public sentiment on various topics. This research explores the application of deep learning techniques, particularly convolutional neural networks (CNN) and recurrent neural networks (RNN), to analyze sentiment within social media text. The results indicate that these models achieve high accuracy in sentiment classification, making them valuable tools for companies seeking to understand public opinion.

References

Broniatowski, D. A., Jamison, A. M., Qi, S., & Alamo, T. (2018). Weaponized health communication: A case study of the Russian trolls on Twitter and vaccine hesitancy. Health Education & Behavior, 45(1), 1-10. https://doi.org/10.1177/1090198117718660

Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora necessarily contain human biases. Science, 356(6334), 183-186. https://doi.org/10.1126/science.aal4230

Chen, Y., Xu, Y., & Liu, Z. (2017). A hybrid model for sentiment analysis based on CNN and LSTM. In Proceedings of the 2017 International Conference on Intelligent Transportation, Big Data & Smart City.

Davidov, D., Tsur, O., & Rappoport, A. (2010). Enhanced sentiment learning using Twitter. In Proceedings of the 23rd International Conference on Computational Linguistics.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805

Gonzalez, C., & Lichtenstein, S. (2017). A case study of social media crisis management. Journal of Business Research, 78, 135-142. https://doi.org/10.1016/j.jbusres.2017.05.001

Gururangan, S., Marasović, A., Swayamdipta, S., et al. (2020). Don’t stop pretraining: Adapt language models to domains and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.

Maas, A. L., Daly, R. E., Pham, P. T., et al. (2011). Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies.

O'Connor, K. P., & Quigley, E. (2010). Using Twitter to analyze public sentiment on a new smartphone. In Proceedings of the 2010 Conference on Social Media and Society.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2), 1-135. https://doi.org/10.1561/1500000011

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Statista. (2023). Number of social media users worldwide from 2010 to 2023. Retrieved from https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. In Proceedings of the Fourth International Conference on Weblogs and Social Media.

Zadeh, A., Chen, M., Poria, S., & Morency, L. P. (2018). Multimodal sentiment analysis using hierarchical fusion with linguistic and affective information. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.

Zhang, Y., & Wallace, B. (2018). A sensitivity analysis of (and practitioner's guide to) convolutional neural networks for sentence classification. In Proceedings of the Eighth International Joint Conference on Natural Language Processing.

Downloads

Published

2024-04-30

How to Cite

Salsabila Septiani, Nabila Putri, Dara Jessica, & Arya Saputra. (2024). Sentiment Analysis Of Social Media Data Using Deep Learning Techniques. International Journal of Computer Technology and Science, 1(2), 08–14. https://doi.org/10.62951/ijcts.v1i2.59

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.