Comparative between the binary thresholding technique and the Otsu method for the people detection

Authors

  • Serri Ismael Hamad University of Thi-Qar

DOI:

https://doi.org/10.62951/ijcts.v2i1.134

Keywords:

Thresholding, Detection, Performance, Accuracy

Abstract

In image detection processes where there is a variation in brightness between pixels, techniques are required to obtain optimal and adaptable threshold values for these variations. Therefore, a comparison between the binary thresholding technique and the adaptive method of Otsu is made, in videos with dynamic and static background, weighing the response time of the algorithm, memory used, requirement of the central processing unit and hits in the detections, in the languages of Python and M (Matlab). The techniques in Python present better results in terms of response time and memory space; while, when using Matlab, the lowest percentage of machine requirement is presented. Also, the Otsu method improves the percentage of hits in 12.89 % and 11.3 % for videos with dynamic and static background, with respect to the binary thresholding technique.

References

Aleskerov, F. T., & Chistyakov, V. V. (n.d.). The threshold decision making. Procedia Computer Science.

Cavanzo, G., Perez, M., & Villavisan, F. (n.d.). Efficiency measurement of computer vision algorithms implemented on Raspberry Pi and personal computer using Python.

Cortes Osorio, J., Chaves Osorio, J., & Mendoza Vargas, J. (n.d.). Qualitative and quantitative comparison of basic local thresholding techniques for digital image processing.

Gedraite, E. S., & Hadad, M. (n.d.). Investigation on the effect of a Gaussian blur in image filtering and segmentation.

Gomez-Villa, A., Diez-Valencia, G., & Salazar-Jimenez, A. E. (n.d.). A Markov random field image segmentation model for lizard spots.

Guerrero Balaguera, J. D. (n.d.). Image processing algorithms.

Huamani Navarrete, P. (n.d.). Multiple thresholding using the Otsu method for red light recognition in traffic lights. Scientia.

Huang, M., Yu, W., & Zhu, D. (n.d.). An improved image segmentation algorithm based on the Otsu method. In Proceedings of the 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking.

Ieno, E., Garces, L. M., Cabrera, A. J., & Pimenta, T. C. (n.d.). Simple generation of threshold for image binarization on FPGA.

Kajabad, E. N., & Ivanov, S. V. (n.d.). People detection and finding attractive areas by the use of movement detection analysis and deep learning approach. Procedia Computer Science.

Leo, M., Medioni, G., Trivedi, M., Kanade, T., & Farinella, G. M. (n.d.). Computer vision for assistive technologies. Computer Vision and Image Understanding.

Lopez-Portilla Vigil, B., Menendez Alonso, R., & Iglesias Martinez, M. (n.d.). Implementation of the Otsu algorithm on FPGA. Revista Cubana de Computer Sciences.

Maldonado Beltran, J., Pena Cortes, C., & Gualdron Gonzalez, O. (n.d.). Automatic identification of gas storage cylinders using Hopfield neural networks.

Maya Perfetti, N. I., Nunez Bedoya, A. M., & Romo Romero, H. A. (n.d.). Performance analysis of vehicle number plate recognition algorithms developed using discrete wavelet transformation and digital image correlation. Investigación e Innovación en Ingeniería.

Neumann, L., & Vedaldi, A. (n.d.). Tiny people pose. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Nino Rondon, C. V., Castro Casadiego, S. A., & Medina Delgado, B. (n.d.). Characterization for the location in video capture applied to artificial vision techniques in the detection of people. Revista Colombiana de Tecnología Avanzada.

Nino Rondon, C. V., Castro Casadiego, S. A., Medina Delgado, B., & Guevara Ibarra, D. (n.d.). Feasibility analysis and design of an electronic system for monitoring population dynamics.

Paul, M., Haque, S. M. E., & Chakraborty, S. (n.d.). Human detection in surveillance videos and its applications - A review. EURASIP Journal on Advances in Signal Processing.

Raghavachari, C., Aparna, V., Chithira, S., & Balasubramanian, V. (n.d.). A comparative study of vision-based human detection techniques in people counting applications. Procedia Computer Science.

Ramos, J. F., Renza, D., & Ballesteros, D. M. (n.d.). Evaluation of spectral similarity indices in unsupervised change detection approaches.

Sanchez-Torres, G., & Taborda-Giraldo, J. A. (n.d.). Automatic estimation of beach occupancy by digital image processing.

Shoba, S., & Rajavel, R. (n.d.). Image processing techniques for segments grouping in monaural speech separation. Circuits, Systems.

Siqueira, D. L., & Correa Machado, A. M. (n.d.). People detection and tracking in low frame-rate dynamic scenes. IEEE Latin America Transactions.

Triana, N., Jaramillo, A. E., Gutierrez, R. M., & Rodriguez, C. A. (n.d.). Thresholding techniques for digital image processing of GEM-Foils.

Vargas, G., Neira, O., Arango, R., & Fernando, D. (n.d.). Cloud segmentation methods applied to satellite images.

Downloads

Published

2025-01-08

How to Cite

Serri Ismael Hamad. (2025). Comparative between the binary thresholding technique and the Otsu method for the people detection. International Journal of Computer Technology and Science, 2(1), 98–111. https://doi.org/10.62951/ijcts.v2i1.134