The Role Of Quantum Computing in Optimizing Machine Learning Algorithms

Authors

  • Nattapong Chaiyathorn Universitas Chiang Mai
  • Pimchanok Anuwat Universitas Chiang Mai

DOI:

https://doi.org/10.62951/ijcts.v1i2.64

Keywords:

Quantum computing, Machine learning, Optimization, Neural networks, Computational efficiency, Large datasets

Abstract

Quantum computing has the potential to revolutionize machine learning by offering exponential speed-up for specific algorithms. This study explores the theoretical and practical implications of using quantum computing to optimize machine learning models, such as in training neural networks. The findings provide insights into the possible improvements in computational efficiency, particularly for large datasets and complex models.

References

Aaronson, S. (2013). Quantum computing since Democritus. Cambridge University Press.

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510. https://doi.org/10.1038/s41586-019-1666-5

Benedetti, M., Lloyd, E., Sack, S., & Fiorentini, M. (2019). Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4(4), 043001. https://doi.org/10.1088/2058-9565/ab4f1a

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195-202. https://doi.org/10.1038/nature23474

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., & Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625-644. https://doi.org/10.1038/s42254-021-00348-9

Farhi, E., & Neven, H. (2018). Classification with quantum neural networks on near-term processors. arXiv preprint arXiv:1802.06002. https://doi.org/10.48550/arXiv.1802.06002

Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212. https://doi.org/10.1038/s41586-019-0980-2

Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10(9), 631-633. https://doi.org/10.1038/nphys3029

McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2), 023023. https://doi.org/10.1088/1367-2630/18/2/023023

Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge University Press.

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M. H., Zhou, X. Q., Love, P. J., & O’Brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 4213. https://doi.org/10.1038/ncomms5213

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79

Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. https://doi.org/10.1103/PhysRevLett.113.130503

Schuld, M., & Petruccione, F. (2018). Supervised learning with quantum computers. Springer. https://doi.org/10.1007/978-3-319-96417-0

Wiebe, N., Braun, D., & Lloyd, S. (2012). Quantum algorithm for data fitting. Physical Review Letters, 109(5), 050505. https://doi.org/10.1103/PhysRevLett.109.050505

Downloads

Published

2024-04-30

How to Cite

Nattapong Chaiyathorn, & Pimchanok Anuwat. (2024). The Role Of Quantum Computing in Optimizing Machine Learning Algorithms. International Journal of Computer Technology and Science, 1(2), 24–26. https://doi.org/10.62951/ijcts.v1i2.64

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.