The Role Of Quantum Computing in Optimizing Machine Learning Algorithms
DOI:
https://doi.org/10.62951/ijcts.v1i2.64Keywords:
Quantum computing, Machine learning, Optimization, Neural networks, Computational efficiency, Large datasetsAbstract
Quantum computing has the potential to revolutionize machine learning by offering exponential speed-up for specific algorithms. This study explores the theoretical and practical implications of using quantum computing to optimize machine learning models, such as in training neural networks. The findings provide insights into the possible improvements in computational efficiency, particularly for large datasets and complex models.
References
Aaronson, S. (2013). Quantum computing since Democritus. Cambridge University Press.
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510. https://doi.org/10.1038/s41586-019-1666-5
Benedetti, M., Lloyd, E., Sack, S., & Fiorentini, M. (2019). Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4(4), 043001. https://doi.org/10.1088/2058-9565/ab4f1a
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195-202. https://doi.org/10.1038/nature23474
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., & Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625-644. https://doi.org/10.1038/s42254-021-00348-9
Farhi, E., & Neven, H. (2018). Classification with quantum neural networks on near-term processors. arXiv preprint arXiv:1802.06002. https://doi.org/10.48550/arXiv.1802.06002
Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212. https://doi.org/10.1038/s41586-019-0980-2
Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10(9), 631-633. https://doi.org/10.1038/nphys3029
McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2), 023023. https://doi.org/10.1088/1367-2630/18/2/023023
Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge University Press.
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M. H., Zhou, X. Q., Love, P. J., & O’Brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 4213. https://doi.org/10.1038/ncomms5213
Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. https://doi.org/10.1103/PhysRevLett.113.130503
Schuld, M., & Petruccione, F. (2018). Supervised learning with quantum computers. Springer. https://doi.org/10.1007/978-3-319-96417-0
Wiebe, N., Braun, D., & Lloyd, S. (2012). Quantum algorithm for data fitting. Physical Review Letters, 109(5), 050505. https://doi.org/10.1103/PhysRevLett.109.050505
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computer Technology and Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.